Optical Communications¶
Lecture 1¶
Fiber Parameter:¶
Pulse Broadening¶
Bit rate for RZ code¶
Lecture 2¶
Mode index or Effective index
Normalized Frequency
Number of Modes
Normalized Propagation Constant
Single-Mode Requirement
Lecture 3¶
graph TD
A(Transmission of Pulses) -->B1("Attenuation(limit dB)")
A-->B2("Dispersion(limit bit rate)")
B1-->C1(Absorption)
B1-->C2(Scattering)
B1-->C3(min->1.55)
B2-->C4(Intermodal)
B2-->C5(Intramodal)
Attenuation¶
Intermodal Dispersion¶
Intermodal Broadening
Material Dispersion
\(\sigma_\lambda\) : Optical Source
Intramodal Dispersion¶
Total Pulse Broadening(Test1 Q2)
\(D_p\) can be ignored.
\(D_W\) can be ignored in multi-mode fiber
Material Dispersion Parameter(Exercise3 Q5,7)
Waveguide Dispersion Parameter(Exercise3 Q3,4 )
Dispersion Slope(Exercise3 Q6)
estimate \(D_T\) near the minimum intramodal dispersion point
Output Pulse Width and Power(Test1 Q3)
Polarization Mode Dispersion(Exercise3 Q8,9)¶
Modal Birefringence
Beat Length
Lecture 4¶
Measurement of NA(Exercise4 Q3)¶
Cut-back method(Exercise4 Q2)¶
control Launch Condition
, because we need to obtain a equilibrium modal power distribution and high-order modes have high attenuation per unit length which makes power distribution not uniform.
Time Domain Measurement(Exercise4 Q4)¶
3-dB pulse (full duration at half maximum) broadening
Bandwidth for Gaussian pulses $$ \sigma = 0.43\tau $$